Thomas ’ conjecture over Function Fields for degree 3 Volker

نویسنده

  • Volker Ziegler
چکیده

Thomas’ conjecture is, given monic polynomials p1, . . . , pd ∈ Z[a] with 0 < deg p1 < · · · < deg pd, then the Thue equation (over the rational integers) (X − p1(a)Y ) · · · (X − pd(a)Y ) + Y d = 1 has only trivial solutions, provided a ≥ a0 with effective computable a0. We consider a function field analogue of Thomas’ conjecture in case of degree d = 3. Moreover we find a counterexample to Thomas’ conjecture for d = 3.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thomas ’ conjecture over Function Fields par

Thomas’ conjecture is, given monic polynomials p1, . . . , pd ∈ Z[a] with 0 < deg p1 < · · · < deg pd, then the Thue equation (over the rational integers) (X − p1(a)Y ) · · · (X − pd(a)Y ) + Y d = 1 has only trivial solutions, provided a ≥ a0 with effective computable a0. We consider a function field analogue of Thomas’ conjecture in case of degree d = 3. Moreover we find a counterexample to Th...

متن کامل

Pro-p hom-form of the birational anabelian conjecture over sub-p-adic fields

We prove a Hom-form of the pro-p birational anabelian conjecture for function fields over sub-p-adic fields. Our starting point is the corresponding Theorem of Mochizuki in the case of transcendence degree 1.

متن کامل

Arithmetic Height Functions over Finitely Generated Fields

In this paper, we propose a new height function for a variety defined over a finitely generated field overQ. For this height function, we will prove Northcott’s theorem and Bogomolov’s conjecture, so that we can recover the original Raynaud’s theorem (Manin-Mumford’s conjecture). CONTENTS Introduction 1 1. Arakelov intersection theory 3 2. Arithmetically positive hermitian line bundles 6 3. Ari...

متن کامل

The pro-p Hom-form of the birational anabelian conjecture

We prove a pro-p Hom-form of the birational anabelian conjecture for function fields over sub-p-adic fields. Our starting point is the corresponding Theorem of Mochizuki in the case of transcendence degree 1.

متن کامل

Analogue of the Degree Conjecture over Function Fields

Under a certain assumption, similar to Manin’s conjecture, we prove an upper bound on the degree of modular parametrizations of elliptic curves by Drinfeld modular curves, which is the function field analogue of the conjectured bound over the rational numbers.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008